Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models
نویسندگان
چکیده
Ja-Yeon Jeong: Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models (Under the direction of Stephen M. Pizer) The estimation of shape probability distributions of anatomic structures is a major research area in medical image analysis. The statistical shape descriptions estimated from training samples provide means and the geometric shape variations of such structures. These are key components in many applications. This dissertation presents two approaches to the estimation of a shape probability distribution of a multi-object complex. Both approaches are applied to objects in the male pelvis, and show improvement in the estimated shape distributions of the objects. The first approach is to estimate the shape variation of each object in the complex in terms of two components: the object’s variation independent of the effect of its neighboring objects; and the neighbors’ effect on the object. The neighbors’ effect on the target object is interpreted using the idea on which linear mixed models are based. The second approach is to estimate a conditional shape probability distribution of a target object given its neighboring objects. The estimation of the conditional probability is based on principal component regression. This dissertation also presents a measure to evaluate the estimated shape probability distribution regarding its predictive power, that is, the ability of a statistical shape model to describe unseen members of the population. This aspect of statistical shape models is of key importance to any application that uses shape models. The measure can be applied to PCAbased shape models and can be interpreted as a ratio of the variation of new data explained by the retained principal directions estimated from training data. This measure was applied to shape models of synthetic warped ellipsoids and right hippocampi. According to two surface distance measures and a volume overlap measure it was empirically verified that the predictive measure reflects what happens in the ambient space where the model lies.
منابع مشابه
Estimation of Probability Distribution on Multiple Anatomical Objects and Evaluation of Statistical Shape Models
Ja-Yeon Jeong: Estimation of Probability Distribution on Multiple Anatomical Objects and Evaluation of Statistical Shape Models (Under the direction of Stephen M. Pizer) The estimation of shape probability distributions of anatomic structures is a major research area in medical image analysis. The statistical shape descriptions estimated from training samples provide means and the geometric sha...
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملOn a New Bimodal Normal Family
The unimodal distributions are frequently used in the theorical statistical studies. But in applied statistics, there are many situations in which the unimodal distributions can not be fitted to the data. For example, the distribution of the data outside the control zone in quality control or outlier observations in linear models and time series may require to be a bimodal. These situations, oc...
متن کاملSTATISTICAL PREDICTION OF THE SEQUENCE OF LARGE EARTHQUAKES IN IRAN
The use of different probability distributions as described by the Exponential, Pareto, Lognormal, Rayleigh, and Gama probability functions applied to estimation the time of the next great earthquake (Ms≥6.0) in different seismotectonic provinces of Iran. This prediction is based on the information about past earthquake occurrences in the given region and the basic assumption that future seismi...
متن کاملUncertainty Estimation in Stream Bed Sediment Fingerprinting Based on Mixing Model
Uncertainty associated with mixing models is often substantial, but has not yet been fully incorporated in models. The objective of this study is to develop and apply a Bayesian-mixing model that estimates probability distributions of source contributions to a mixture associated with multiple sources for assessing the uncertainty estimation in sediment fingerprinting in Zidasht catchment, Iran....
متن کامل